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Figure 4 depicts the fin effectiveness I#I based on an iso- 
thermal fin for both the complete and simple models. The 
effectiveness 4 decreases as N, and Pr increase since the fin 
becomes more and more nonisothermal due to decreased 
fin conductance (Krr,) and/or increased convective effects. 
Though the difference in 4 for the two models is small, it 
may be pointed out that the higher the values of N, and Pr 
the more conservative the simple model gets. These results 
are for R. = 4. We know [9] that the fin temperature becomes 
less uniform as R. decreases due to lower fin conductance. 
Thus, the fin effectiveness will decrease with decreasing R,. 
The overall heat transfer rate Qhl from the fin can be. easily 
calculated from Fig. 4 and Table 1, and is therefore not 
presented separately. 

6. CONCLUSIONS 

A numerical solution of the coupled fin conduction equa- 
tion and the laminar, forced convective boundary layer equa- 
tions for a cylindrical fin has been carried out. The effects of 
Prandtl number and the conduction-convection parameter 
on the heat transfer characteristics have been studied. It 
has been found that the dimensionless average heat transfer 
coefficient for an isothermal cylindrical fin is nearly pro- 
portional to Pro-‘. While the simple model predicts the fin 
effectiveness and the overall heat transfer rate from the fin 
within tolerable accuracy over the entire range of Pr values, 
its predictions of local heat flux and fin temperature are in 
substantial error. 
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1. INTRODUCTION 

TRANSIENT heat transfer from a cylinder placed in a fluid- 
saturated porous medium is considered. It is assumed that 
the flows are perpendicular to the cylinder axis and the vel- 
ocities are sufficiently large to neglect the buoyant force 
caused by temperature differences, but small enough to 
ensure the validity of Darcy’s law. When the wall tem- 
perature of the cylinder is raised to T, and maintained at 
that temperature thereafter, the thin thermal boundary layer 
is formed during a small time period. The thermal layer 
then grows with time until the radial thermal diffusion is 
eventually balanced with the cross convection. The associ- 
ated steady-state problem was first considered by Cheng [l] 
with boundary layer approximations. The analysis has been 
recently extended by Kimura [2] to cylinders of elliptic cross 

sections with integral methods. The forced convection from 
a cylinder has important applications in an area for shallow 
geothermal energy use and development. For instance a 
shallow aquifer, which is kept at a temperature of about 
10°C during the winter time, is a possible heat source for 
house heating and other uses in cold regions. Development 
of heat extraction techniques from shallow aquifers with 
cylindrical heat exchangers, i.e. large heat pipes, requires 
knowledge on heat transfer described in the present problem. 

2. MATHEMATICAL FORMULATION AND 
SOLUTION PROCEDURE 

Nondimensionalized conservation equations for momen- 
tum and energy with the assumption of Darcy’s law and 
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NOMENCLATURE 

a radius of circular cylinder [m] 
c specific heat at constant pressure 

[J kg-’ K-‘1 
H dimensionless constant to determine a 

computational domain, equation (7) 
k, effective thermal conductivity 

[wm-’ K-‘1 
Nu Nusselt number, 2naq”/ATk, 
Pe Peclet number, lJa/a 

4” heat flux in a unit area [w m-‘1 
T temperature [K] 
AT temperature difference, T,,.- r, [K] 
U free stream velocity [m s-‘1 
W dimensionless constant to determine a 

computational domain, equation (7) 
x dimensionless horizontal coordinate 
Y dimensionless vertical coordinate. 

Greek symbols 
a effective thermal diffusivity defined by equation 

(5) 
Y Euler’s constant in equation (8) 
8 dimensionless temperature 
P fluid density 
u heat capacity ratio defined by equation (3) 

i 
dimensionless time, la/& 
porosity of porous matrix 

+ dimensionless stream function. 

Subscripts 
2a characteristic length in defining Peclet number. 
f thermal properties of fluid 
S thermal properties of solid matrix 
W conditions at cylinder wall 
cc conditions at infinity. 

thermodynamic equilibrium between a porous matrix and 
the saturated fluid are 

V’JI = 0 (1) 

g+ Pe !!c!& = vqj, 
a@, Y) 

The velocity, temperature, length and time are scaled by 
incoming free velocity U,, temperature difference T,- T,, 
radius of the cylinder and diffusion time defined by oa2/a, 
respectively. The continuity equation has been eliminated in 
a usual manner by introducing the stream function $. The 
Peclet number, Pe, is based on the cylinder radius. cr is the 
thermal capacity ratio of the saturated porous matrix to the 
saturated fluid as defined by equation (3). a is the effective 
thermal diffusivity defined by the volume-averaged thermal 
conductivity divided by the thermal capacity of the saturated 
fluid as in equations (4) and (5) 

(r = @cM+(l-4)@c), 
(PC)l 

k, = k&+(1-4)k, 

(3) 

(4) 

k 
a=@C)r 

where 4 is the porosity of the solid matrix and subscripts s 
and f indicate properties of the solid matrix and saturated 
fluid, respectively. Supposing a rectangular domain as shown 
in Fig. 1, the boundary conditions of equations (1) and (2) 

FIG. 1. Circular cylinder in a saturated porous matrix with 
uniform cross flows. 

are 

6=1, $=O on J(x’+y*)=l 

tl=O, *=y on x=-w 

0, =O, @ = H on y=H 

e, =o, $, = 0 on x = w. (6) 

2.1. Small-lime solution 
In a small time after the temperature of the cylinder surface 

is raised, the thermal boundary layer is still thin and it may 
not feel the presence of the convecting flows [3, 41. This 
assumption reduces the governing equations to a simple heat 
conduction equation. The solution in terms of Nusselt num- 
ber is expressed by 

Nu+& 
5 

2n{&+;-;/;+;-...} (7) 

for a small r and 

Nu=4n 
1 Y 

In(4r)-2y - {ln(45)-2y}2 - “’ (8) 

for a large T, where Y = 0.57722 . . . (51. 

2.2. Steady-state solution 
As time elapses, the thermal layer grows steadily. The 

balance between the radial diffusion and the transverse con- 
vection in the energy equation will eventually lead to a steady 
state. Neglecting the time derivative in the energy equation 
and assuming the thermal boundary layer thickness is still 
small relative to the radius of the cylinder, the equation may 
be integrated once in the radial direction to yield an integral 
form of the energy conservation statement. The average Nus- 
selt number for the steady state by integral solution [2] reads 

Nu = 3.1O,/(Pe,,). (9) 

The above expression is accurate when Pe2, > 3, where the 
subscript 2a indicates the characteristic length used in the 
definition. 

2.3. Numerical solution of complete governing equations 
A full two-dimensional solution of equations (1) and (2) 

in terms of finite differences has been sought in order to 
bridge the two extremities ; pure conduction and steady-state 
convection. The rectangular region of Fig. 1 is divided into 
a non-uniform grid network. Sufficiently fine grid spaces are 
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FIG. 2. Nusselt number during transient process. Solid and dashed lines are by pure conduction and by 
steady-state integral solution, respectively. Various symbols are due to numerical solution. 

employed near the cylinder, while relatively coarse ones are 
used in the far field together with an apparent symmetry 
relative to the x-coordinate in order to save computer time. 
The size of the computational domain is controlled by assign- 
ing arbitrary large numbers on H and W. Care has been 
taken to ensure a large enough area not to affect the solution, 
particularly for small Peclet numbers. 

3. RESULTS AND DISCUSSION 

Heat transfer results obtained by the previous section are 
all assembled in Fig. 2. The Nusselt numbers are plotted as a 
function of non-dimensional time r, while the Peclet number 
based on cylinder diameter is used as a parameter. A solid 
line indicates the Nusselt number from the pure conduction 
solution (equations (7) and (8)). Dashed lines indicate the 
convective steady-state Nusselt numbers obtained from 
equation (9). Various symbols on the figure show the Nusselt 
numbers from the numerical solution. Numerical results, in 
general, agree well with the solid line for small values of r 
and with the dashed lines for large values of T at respective 
Peclet numbers. Steady decreases in Nusselt number along 
the solid line and the gradual deviations to approach to 
respective constant values are the common feature seen for 
all Peclet numbers in the transient process. The smooth tran- 
sition from pure conduction to convective steady solution 
without passing through any oscillatory behavior, which is 
often observed in the transient solution of ordinary fluids, 
is one characteristic of the present problem. Insufficient 
resolution of the boundary layer in the numerical solution, 
however, under-estimates Nusselt numbers in the early stage 
of pure conduction (r < 5 x lo-‘) and in the convective 
steady state of large Peclet numbers. In both cases extremely 
thin boundary layers are expected. Figure 3 shows the tem- 
perature fields at three different T’S during the boundary layer 
development. The isotherms shown in a sequential manner 
clearly support the earlier view on the transient process. For 
example at r = 0.01 all isotherms are nearly concentric and 
exhibit no effect from convective flows. The heat transport 
there is dominated by pure conduction. As r increases, how- 
ever, isotherms behind the cylinder begin to grow in the 
downstream direction; the convection starts coming into 
play. 

Another important objective in analyzing the present 
problem is to establish a general way to estimate the length 
of the transient period. Figure 2 shows that transient periods 
generally decrease with increasing Peclet numbers. This point 
can be argued more rigorously based on scale analysis [6]. 
Since the time required for fluid motion to reach a steady 

state must be proportional to that for the fluid element 
to travel over a characteristic length with a characteristic 
velocity. Identifying that the length and the velocity scales 
are the radius of the cylinder and the free stream velocity, 
the above statement can be transformed to 

5 _ Peg’. (10) 

7=0.01 

- 

7=0.2 

FIG. 3. Thermal layer growth about a circular cylinder at 
Pe,, = 20. The contour interval is AtJ = 0.1. 
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neglecting the time derivative in the energy equation. Plotted 
values of T in the figure show the points at which the differ- 

@rj magnitude. 
ence between the two becomes smaller than 5% in relative 

In summary transient heat transfer characteristics from 
a circular cylinder in a porous layer have been delineated 
when cross flows are present. The problem has been studied 
analytically and numerically. The major findings are : 

(1) heat transfer is dominated by pure conduction in the 
early stage of the transient process ; 

(2) transition from pure conduction to convective state is 
smooth without any overshoot and undershoot in Nusselt 
number ; 

(3) dimensionless time 7 to reach convective steady state 
is inversely proportional to Peclet number. 
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FIG. 4. Dimensionless time to reach steady states at different 
Peclet numbers. 2. 

3. 
Figure 4 shows dimensionless time to reach steady state as a 
function of Peclet number. The following equation is found 4, 
tobeagoodfitinarangeof3CPe,<SO 

5 

7=peL 
(11) 

5. 
Determining 7 at steady state is not easy. In the present study 
time-dependent Nusselt numbers are monitored in corn- 6. 
paring with steady state ones that were numerically generated 
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