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Figure 4 depicts the fin effectiveness ¢ based on an iso-
thermal fin for both the complete and simple models. The
effectiveness ¢ decreases as N, and Pr increase since the fin
becomes more and more nonisothermal due to decreased
fin conductance (K;r,) and/or increased convective effects.
Though the difference in ¢ for the two models is small, it
may be pointed out that the higher the values of N, and Pr
the more conservative the simple model gets. These results
are for R, = 4. We know [9] that the fin temperature becomes
less uniform as R, decreases due to lower fin conductance.
Thus, the fin effectiveness will decrease with decreasing R,.
The overall heat transfer rate Qy from the fin can be easily
calculated from Fig. 4 and Table 1, and is therefore not
presented separately.

6. CONCLUSIONS

A numerical solution of the coupled fin conduction equa-
tion and the laminar, forced convective boundary layer equa-
tions for a cylindrical fin has been carried out. The effects of
Prandtl number and the conduction-convection parameter
on the heat transfer characteristics have been studied. It
has been found that the dimensionless average heat transfer
coefficient for an isothermal cylindrical fin is nearly pro-
portional to Pr®3. While the simple model predicts the fin
effectiveness and the overall heat transfer rate from the fin
within tolerable accuracy over the entire range of Pr values,
its predictions of local heat flux and fin temperature are in
substantial error.
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1. INTRODUCTION

TRANSIENT heat transfer from a cylinder placed in a fluid-
saturated porous medium is considered. It is assumed that
the flows are perpendicular to the cylinder axis and the vel-
ocities are sufficiently large to neglect the buoyant force
caused by temperature differences, but small enough to
ensure the validity of Darcy’s law. When the wall tem-
perature of the cylinder is raised to T, and maintained at
that temperature thereafter, the thin thermal boundary layer
is formed during a small time period. The thermal layer
then grows with time until the radial thermal diffusion is
eventually balanced with the cross convection. The associ-
ated steady-state problem was first considered by Cheng [1]
with boundary layer approximations. The analysis has been
recently extended by Kimura [2] to cylinders of elliptic cross

sections with integral methods. The forced convection from
a cylinder has important applications in an area for shallow
geothermal energy use and development. For instance a
shallow aquifer, which is kept at a temperature of about
10°C during the winter time, is a possible heat source for
house heating and other uses in cold regions. Development
of heat extraction techniques from shallow aquifers with
cylindrical heat exchangers, i.e. large heat pipes, requires
knowledge on heat transfer described in the present problem.

2. MATHEMATICAL FORMULATION AND
SOLUTION PROCEDURE

Nondimensionalized conservation equations for momen-
tum and energy with the assumption of Darcy’s law and



Technical Notes 193

U free stream velocity [ms™']

W  dimensionless constant to determine a
computational domain, equation (7)

x  dimensionless horizontal coordinate

y  dimensionless vertical coordinate.

NOMENCLATURE
a  radius of circular cylinder {m] Greek symbols
¢ specific heat at constant pressure o effective thermal diffusivity defined by equation
Pkg'K'] (%)
H  dimensionless constant to determine a y Euler’s constant in equation (8)
computational domain, equation (7) 6  dimensionless temperature
k. effective thermal conductivity p  fluid density
Wm'K™'] ¢  heat capacity ratio defined by equation (3)
Nu Nusselt number, 2raq”/ATk, t  dimensionless time, ta/oa’
Pe Peclet number, Ua/a ¢  porosity of porous matrix
¢” heat flux in a unit area [Wm™2] ¥ dimensionless stream function.
T  temperature [K]
AT temperature difference, T,,— T, [K] Subscripts

2a characteristic length in defining Peclet numben
f  thermal properties of fluid

s  thermal properties of solid matrix

w  conditions at cylinder wall

oo conditions at infinity.

thermodynamic equilibrium between a porous matrix and
the saturated fluid are

Vi =0 )
% 5 00.¥)
E+Pem=V20. (2)

The velocity, temperature, length and time are scaled by
incoming free velocity U, temperature difference T, — T,
radius of the cylinder and diffusion time defined by oa?/a,
respectively. The continuity equation has been eliminated in
a usual manner by introducing the stream function y. The
Peclet number, Pe, is based on the cylinder radius. ¢ is the
thermal capacity ratio of the saturated porous matrix to the
saturated fluid as defined by equation (3). « is the effective
thermal diffusivity defined by the volume-averaged thermal
conductivity divided by the thermal capacity of the saturated
fluid as in equations (4) and (5)

5 £Ad+1-9)(p0),

7] ®

ko = kep+(1— Bk, @
.

s )

where ¢ is the porosity of the solid matrix and subscripts s
and f indicate properties of the solid matrix and saturated
fluid, respectively. Supposing a rectangular domain as shown
in Fig. 1, the boundary conditions of equations (1) and (2)

aH
Y
Uo, T
—
~aw “a 0 a X aw

F1G. 1. Circular cylinder in a saturated porous matrix with
uniform cross flows.

are
=1, ¥y=0 on Jx*+y*)=1
=0, Y=y on x=-—-W
6,=0, ¥=H on y=H
0,=0, ¢y,=0 on x=W. 6)

2.1. Small-time solution
In a small time after the temperature of the cylinder surface
is raised, the thermal boundary layer is still thin and it may
not feel the presence of the convecting flows {3, 4). This
assumption reduces the governing equations to a simple heat
conduction equation. The solution in terms of Nusselt num-
ber is expressed by
) } Q)

Nu 2mag =2n{—1-+1—-l\/3+%—
1 ¥
In(d1)—2y {In(4t)—2y}2 } ®

T kAT
for a large 1, where y = 0.57722 ... [5].

for a small 7 and

Nu=41r{

2.2. Steady-state solution

As time elapses, the thermal layer grows steadily. The
balance between the radial diffusion and the transverse con-
vection in the energy equation will eventually lead to a steady
state. Neglecting the time derivative in the energy equation
and assuming the thermal boundary layer thickness is still
small relative to the radius of the cylinder, the equation may
be integrated once in the radial direction to yield an integral
form of the energy conservation statement. The average Nus-
selt number for the steady state by integral solution [2] reads

Nu = 3.10/(Pey,). )

The above expression is accurate when Pe,, > 3, where the
subscript 2a indicates the characteristic length used in the
definition.

2.3. Numerical solution of complete governing equations

A full two-dimensional solution of equations (1) and (2)
in terms of finite differences has been sought in order to
bridge the two extremities ; pure conduction and steady-state
convection. The rectangular region of Fig. 1 is divided into
a non-uniform grid network. Sufficiently fine grid spaces are
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F16. 2. Nusselt number during transient process. Solid and dashed lines are by pure conduction and by
steady-state integral solution, respectively. Various symbols are due to numerical solution.

employed near the cylinder, while relatively coarse ones are
used in the far field together with an apparent symmetry
relative to the x-coordinate in order to save computer time.
The size of the computational domain is controlled by assign-
ing arbitrary large numbers on H and W. Care has been
taken to ensure a large enough area not to affect the solution,
particularly for small Peclet numbers.

3. RESULTS AND DISCUSSION

Heat transfer results obtained by the previous section are
all assembled in Fig. 2. The Nusselt numbers are plotted asa
function of non-dimensional time 7, while the Peclet number
based on cylinder diameter is used as a parameter. A solid
line indicates the Nusselt number from the pure conduction
solution (equations (7) and (8)). Dashed lines indicate the
convective steady-state Nusselt numbers obtained from
equation (9). Various symbols on the figure show the Nusselt
numbers from the numerical solution. Numerical results, in
general, agree well with the solid line for small values of t
and with the dashed lines for large values of 7 at respective
Peclet numbers. Steady decreases in Nusselt number along
the solid line and the gradual deviations to approach to
respective constant values are the common feature seen for
all Peclet numbers in the transient process. The smooth tran-
sition from pure conduction to convective steady solution
without passing through any oscillatory behavior, which is
often observed in the transient solution of ordinary fluids,
is one characteristic of the present problem. Insufficient
resolution of the boundary layer in the numerical solution,
however, under-estimates Nusselt numbers in the early stage
of pure conduction (1 < 5x10~%) and in the convective
steady state of large Peclet numbers. In both cases extremely
thin boundary layers are expected. Figure 3 shows the tem-
perature fields at three different ’s during the boundary layer
development. The isotherms shown in a sequential manner
clearly support the earlier view on the transient process. For
example at 7 = 0.01 all isotherms are nearly concentric and
exhibit no effect from convective flows. The heat transport
there is dominated by pure conduction. As t increases, how-
ever, isotherms behind the cylinder begin to grow in the
downstream direction; the convection starts coming into
play.

Another important objective in analyzing the present
problem is to establish a general way to estimate the length
of the transient period. Figure 2 shows that transient periods
generally decrease with increasing Peclet numbers. This point
can be argued more rigorously based on scale analysis [6].
Since the time required for fluid motion to reach a steady

state must be proportional to that for the fluid element
to travel over a characteristic length with a characteristic
velocity. Identifying that the length and the velocity scales
are the radius of the cylinder and the free stream velocity,
the above statement can be transformed to

T ~ Pes,'.

(19

7=0.2

=11

FIG. 3. Thermal layer growth about a circular cylinder at
Pe,, = 20. The contour interval is AG = 0.1.



Technical Notes 195

102: T T T 1T T T T T TTT T
0 E
E 3
I C ]
r o 9
1= 3
L d _
L3 5
r 1
n—l Lo gagal Lot T T 'Y
1 0 102 ©*
Peyx
F1G. 4. Dimensionless time to reach steady states at different
Peclet numbers.

Figure 4 shows dimensionless time to reach steady state asa
function of Peclet number. The following equation is found
to be a good fit in a range of 3 < Pe,, < 80

5

T=—
Pe 2a
Determining t at steady state is not easy. In the present study
time-dependent Nusselt numbers are monitored in com-
paring with steady state ones that were numerically generated

an

neglecting the time derivative in the energy equation. Plotted
values of 7 in the figure show the points at which the differ-
ence between the two becomes smaller than 5% in relative
magnitude.

In summary transient heat transfer characteristics from
a circular cylinder in a porous layer have been delineated
when cross flows are present. The problem has been studied
analytically and numerically. The major findings are:

(1) heat transfer is dominated by pure conduction in the
early stage of the transient process;

(2) transition from pure conduction to convective state is
smooth without any overshoot and undershoot in Nusselt
number ;

(3) dimensionless time t to reach convective steady state
is inversely proportional to Peclet number.
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